

2.13inch E-Paper RBW

Product Specifications

Customer	Standard
Description	2.13 E-paper Display
Model Name	2.13inch E-Paper RBW
Date	2023/04/08
Revision	1.0

Table of contents

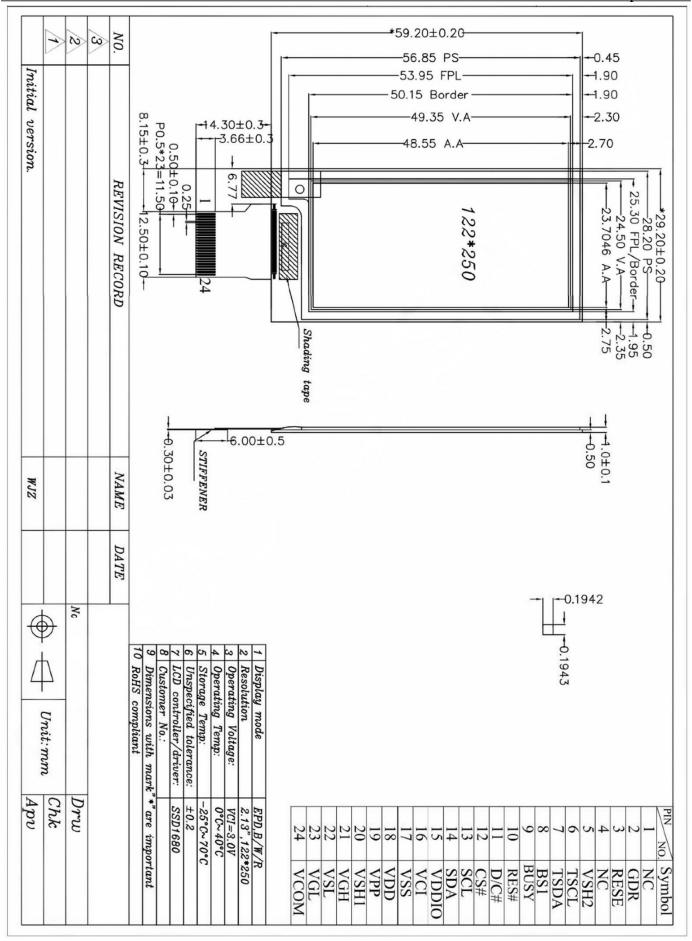
1. General Description	1
1.1 Over View	1
1.2 Features	1
1.3 Mechanical Specifications	1
1.4 Mechanical Drawing of EPD module	2
1.5 Reference Circuit	3
1.6 Input/Output Pin Assignment	4
2. COMMAND TABLE	5
3. Environmental	18
3.1 HANDLING, SAFETYAND ENVIROMENTAL REQUIREMENTS	18
3.2 Reliability test	19
4. Electrical Characteristics	20
4.1 ABSOLUTE MAXIMUM RATING	20
4.2 DC CHARACTERISTICS	20
4.3 Serial Peripheral Interface Timing	21
4.4 MCU Interface	22
4.4-1 MCU interface selection	22
4.4-2 MCU Serial Peripheral Interface (4-wire SPI)	22
4.4-3 MCU Serial Peripheral Interface (3-wire SPI)	23
4.4 Block Diagram	25
5. Typical Operating Sequence	26
5.1 General operation flow to drive display panel	26
5.2 Normal Program Reference Code	27
6. Optical characteristics	27
6.1 Specifications	27
7. Point and line standard	28
7.1 Electric inspection standard	28
7.2 Appearance inspection standard	29

8. Precautions30

1. General Description

1.1 Over View

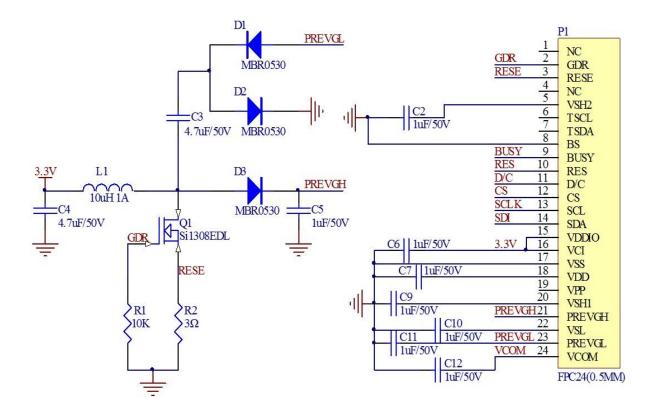
2.13inch e-Paper RBW is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The 2.13" active area contains 250 × 122 pixels, and has 1-bit Black/White and highlight Red full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM and border are supplied with each panel.


1. 2 Features

- ■250 × 122 pixels display
- ■High contrast
- ■High reflectance
- Ultra wide viewing angle
- ■Ultra low power consumption
- ■Pure reflective mode
- ■Bi-stable display
- ■Commercial temperature range
- ■Landscape, portrait modes
- Hard-coat antiglare display surface
- ■Ultra Low current deep sleep mode
- ■On chip display RAM
- ■Waveform can stored in On-chip OTP or written by MCU
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ■12C signal master interface to read external temperature sensor/built-in temperature sensor

1.3 Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	250(V) × 122(H)	Pixel	Dpi:130
Active Area	48.55 (V) × 23.7 (H)	mm	
Pixel Pitch	0.1943 × 0.1943	mm	
Pixel Configuration	Square		
Outline Dimension	59.2(V) × 29.2(H) × 1.05(D)	mm	
Weight	3.2 ± 0.5	g	



1.4 Mechanical Drawing of EPD module

1.5 Reference Circuit

Note:

- 1. Inductor L1 is wire-wound inductor. There are no special requirements for other parameters.
- 2. Suggests using Si1304BDL or Si1308EDL TUBE MOS (Q1), otherwise it may affect the normal boost of the circuit.
- 3. The default circuit is 4-wire SPI.
- 4. Default voltage value of all capacitors is 50 V.

1.6 Input/Output Pin Assignment

Pin #	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins e	Keep Open
5	VSH2	This pin is Positive Source driving voltage	
6	TSCL	I ² C Interface to digital temperature sensor Clock pin	
7	TSDA	I ² C Interface to digital temperature sensor Date pin	
8	BS1	Bus selection pin	Note 1.6-5
9	BUSY	Busy state output pin	Note 1.6-4
10	RES#	Reset	Note 1.6-3
11	D/C #	Data /Command control pin	Note 1.6-2
12	CS#	Chip Select input pin	Note 1.6-1
13	SCL	serial clock pin (SPI)	
14	SDA	serial data pin (SPI)	
15	VDDIO	Power for interface logic pins	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	This pin is Positive Source driving voltage	
21	VGH	This pin is Positive Gate driving voltage	
22	VSL	This pin is Negative Source driving voltage	
23	VGL	This pin is Negative Gate driving voltage	
24	VCOM	These pins are VCOM driving voltage	

Note 1.6-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.

Note 1.6-2: This pin (D/C#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.

- Note 1.6-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 1.6-4: This pin(BUSY#) is state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when Outputting display waveform Communicating with digital temperature sensor.
- Note 1.6-5: This pin (BS1) is for 3-line SPI or 4-line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3-line SPI (9 bits SPI) is selected.

2. COMMAND TABLE

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	on			
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti				
0	1	-	A7	A ₆	A ₅	Aı	A ₃	A ₂	A ₁	A ₀	Driver Output control		-], 296 MU	X	
7.	- 12		-	-	-	-	-	-	-	-		MUX Gate lines setting as (A[8:0]				
0 0	1		0	0	0	0 0	0	0 B2	0 B1	As Bo		B [2:0] = 0 Gate scan B[2]: GD Selects th GD=0 [PC G0 is the output sec GD=1, G1 is the output sec B[1]: SM Change sc SM=0 [PC G0, G1, G interlaced SM=1,	e lines se 2000 [POR nning seq ne 1st outp DR], 1st gate of quence is 1st gate of quence is canning of DR], 32, G32	itting as (A I]. uence and	(8:0] + 1) d direction nnel, gate 62, G3, nnel, gate 33, G2, ate driver. and right gate	
												B[0]: TB				
		_										TB = 0 [P		from G0 G295 to G		
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage	TB = 0 [P6 TB = 1, sc	can from (G295 to G		
0	0	03	0	0	0	0 A4	0 A ₃	0 A ₂	1 A ₁	1 Ao	Gate Driving voltage Control	TB = 0 [P6 TB = 1, so Set Gate 6 A[4:0] = 0	driving vo	G295 to G oltage	0.	
0	2	03		1	-	22.	100	1000				TB = 0 [P6 TB = 1, so Set Gate 6 A[4:0] = 0 VGH setti	driving vo	G295 to G oltage 10V to 20V	0.	
7	2	03		1	-	22.	100	1000				TB = 0 [P0 TB = 1, so Set Gate 0 A[4:0] = 0 VGH settin A[4:0]	driving vo 0h [POR] ng from 1	Oltage OV to 20V A[4:0]	VGH	
200	2	03		1	-	22.	100	1000				TB = 0 [P0 TB = 1, so Set Gate 0 A[4:0] = 0 VGH settii A[4:0] 00h	driving vo 0h [POR] ng from 1 VGH 20	Oltage OV to 20V A[4:0] ODh	VGH 15	
77	2	03		1	-	22.	100	1000				TB = 0 [P0 TB = 1, so Set Gate of A[4:0] = 00 VGH settin A[4:0] 00h 03h	driving vo 0h [POR] ng from 1 VGH 20	oltage OV to 20V A[4:0] ODh OEh	VGH 15 15.5	
7	2	03		1	-	22.	100	1000				TB = 0 [PG TB = 1, sc Set Gate 6 A[4:0] = 00 VGH settin A[4:0] 00h 03h 04h	driving vo 0h [POR] ng from 1 VGH 20 10	oltage OV to 20V A[4:0] ODh OEh OFh	VGH 15 15.5	
200	2	03		1	-	22.	100	1000				TB = 0 [PG TB = 1, so Set Gate of A[4:0] = 00 VGH settin A[4:0] 00h 03h 04h 05h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5	oltage OV to 20V A[4:0] ODh OEh OFh 10h	VGH 15 15.5 16 16.5	
200	2	03		1	-	22.	100	1000				TB = 0 [PG TB = 1, so Set Gate of A[4:0] = 0 VGH settin A[4:0] 00h 03h 04h 05h 06h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11	G295 to G oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h	VGH 15 15.5 16 16.5	
7	2	03		1	-	22.	100	1000				TB = 0 [PG TB = 1, so Set Gate of A[4:0] = 0 VGH settin A[4:0] 00h 03h 04h 05h 06h 07h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5	G295 to G oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h 12h	VGH 15 15.5 16 16.5 17	
200	2	03		1	-	22.	100	1000				TB = 0 [Po TB = 1, so Set Gate of A[4:0] = 0 VGH settin A[4:0] 00h 03h 04h 05h 06h 07h 08h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12	Oltage Oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h 12h 13h	VGH 15 15.5 16 16.5 17 17.5	
7	2	03		1	-	22.	100	1000				TB = 0 [Po TB = 1, so Set Gate of A[4:0] = 0 VGH settii A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5	Oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h 12h 13h 14h	VGH 15 15.5 16 16.5 17 17.5 18	
200	2	03		1	-	22.	100	1000				TB = 0 [Po TB = 1, so Set Gate of A[4:0] = 00 VGH settin A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12	G295 to G oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h 12h 13h 14h 15h	VGH 15 15.5 16 16.5 17 17.5 18 18.5	
77	2	03		1	-	22.	100	1000				TB = 0 [PG TB = 1, so Set Gate of A[4:0] = 0 VGH settin A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 09h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5	Oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h 12h 13h 14h 15h	VGH 15 15.5 16 16.5 17 17.5 18 18.5 19	
-	2	03		1	-	22.	100	1000				TB = 0 [Po TB = 1, so Set Gate of A[4:0] = 0 VGH settin A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 09h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5 13	Oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h 12h 13h 14h 15h 16h 17h	VGH 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20	
7.7	2	03		1	-	22.	100	1000				TB = 0 [P0 TB = 1, so Set Gate of A[4:0] = 0 VGH settin A[4:0] 00h 03h 04h 05h 06h 07h 08h 07h 08h 09h	driving vo 0h [POR] ng from 1 VGH 20 10 10.5 11 11.5 12 12.5 12 12.5	Oltage OV to 20V A[4:0] ODh OEh OFh 10h 11h 12h 13h 14h 15h	VGH 15 15.5 16 16.5 17 17.5 18 18.5 19	

Com	ommand Table														
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description			
0	0	04	0	0	0	0	0	1	0	0	Source Driving voltage	Set Source driving voltage			
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀			A[7:0] = 41h [POR], VSH1 at 15V		
0	1		B ₇	Be	Bo	B ₄	Вз	B ₂	B ₁	Bo		B[7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V			
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	1	Remark: VSH1>=VSH2			
MARKET	Topos a post of	-	_			_			Antonia	Aspennens	-to-	The state of the s			

A[7]/B[7] = 1,

VSH1/VSH2 voltage setting from 2.4V to 8.8V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
8Eh	2.4	AFh	5.7
8Fh	2.5	B0h	5.8
90h	2.6	B1h	5.9
91h	2.7	B2h	6
92h	2.8	B3h	6.1
93h	2.9	B4h	6.2
94h	3	B5h	6.3
95h	3.1	B6h	6.4
96h	3.2	B7h	6,5
97h	3.3	B8h	6.6
98h	3.4	B9h	6.7
99h	3.5	BAh	6.8
9Ah	3.6	BBh	6.9
9Bh	3.7	BCh	7
9Ch	3,8	BDh	7.1
9Dh	3.9	BEh	7.2
9Eh	4	BFh	7.3
9Fh	4.1	C0h	7.4
A0h	4.2	C1h	7.5
Ath	4.3	C2h	7.6
A2h	4.4	C3h	7.7
A3h	4.5	C4h	7.8
A4h	4.6	C5h	7.9
A5h	4.7	C6h	8
A6h	4.8	C7h	8.1
A7h	4.9	C8h	8.2
A8h	5	C9h	8.3
A9h	5.1	CAh	8.4
AAh	5.2	CBh	8.5
ABh	5.3	CCh	8.6
ACh	5.4	CDh	8.7
ADh	5.5	CEh	8.8
AEh	5.6	Other	NA.

A[7]/B[7] = 0, VSH1/VSH2 voltage setting from 9V to 17V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2		
23h	9	3Ch	14		
24h	9.2	3Dh	14.2		
25h	9.4	3Eh	14.4		
26h	9.6	3Fh	14.6		
27h	9.8	40h	14.8		
28h	10	41h	15		
29h	10.2	42h	15.2		
2Ah	10.4	43h	15.4		
28h	10.6	44h	15,6		
2Ch	10.8	45h	15.8		
2Dh	11	46h	16		
2Eh	11.2	47h	16.2		
2Fh	11.4	48h	16.4		
30h	11.6	49h	16.6		
31h	11.8	4Ah	16.8		
32h	12	4Bh	17		
33h	12.2	Other	NA		
34h	12.4	-	9220		
35h	12.6				
36h	12.8				
37h	13				
38h	13.2				
39h	13.4				
3Ah	13.6				
38h	13.8				

C[7] = 0,

VSL setting from -5V to -17V

C[7:0]	VSL			
0Ah	-5			
0Ch	-5.5			
0Eh	-6			
10h	-6.5			
12h	-7			
14h	-7.5			
16h	-8			
18h	-8.5			
1Ah	-9			
1Ch	-9.5			
1Eh	-10			
20h	-10.5			
22h	-11			
24h	-11.5			
26h	-12			
28h	-12.5			
2Ah	-13			
2Ch	-13.5			
2Eh	-14			
30h	-14.5			
32h	-15			
34h	-15.5			
36h	-16			
38h	-16.5			
3Ah	-17			
Other	NA			

0	0	08	0	0	0	0	1	0	0	0	Initial Code Setting OTP Program	Program Initial Code Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	09	0	0	0	0	1	0	0	1		Write Register for Initial Code Setting
0	1		A ₇	Ав	A ₅	A ₄	A ₃	A ₂	A ₁	Ao	3	Selection
0	1		B ₇	Be	Bo	B ₄	B ₃	B ₂	B ₁	Bo		A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C2	C ₁	Co		Code Setting
0	1		D ₇	D ₆	D₅	D ₄	D ₃	D ₂	D ₁	D ₀		•
0	0	0A	0	0	0	0	1	0	1	0	Read Register for Initial Code Setting	Read Register for Initial Code Setting

Com	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on						
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start		ble with Phase 1, Pha	se 2 and Phase					
0	1	00	1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control		current and duration s						
		_	100	-			-	-	-	-	5000000000	A[7:0] -> Sc	ft start setting for Phas	se1					
0	1	-	1	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	-	=	8Bh [POR]						
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	-		ft start setting for Phas 9Ch [POR]	se2					
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		C[7:0] -> So	ft start setting for Phas	se3					
													96h [POR] ration setting						
									-				0Fh [POR]						
												Bit De A[6:0]	scription of each byte: / B[6:0] / C[6:0]:						
												Bit[6:4	Driving S						
												000	Select 1(Wea						
												000	2						
												010	3						
												010	4						
												100	5						
																	101	6	
														110	7				
												111	8(Stron						
												1.13	0(300)	igest)					
												Bit[3:0	Min Off Time S						
												0000							
												0011	N/	*					
												0100	2.0	6					
												0101	3.2	2					
												0110	3.9	9					
												0111	4.6	6					
												1000	5.4	4					
												1001	6.3	3					
-1												1010	7.3	3					
												1011	8.4	4					
												1100	9.8	В					
												1101	11.	.5					
												1110	13.	.8					
												1111	16.	.5					
												D[5:4 D[3:2	duration setting of ph duration setting of p duration setting of p duration setting of p	hase 3 hase 2 hase 1 of Phase					
												00	[Approxi	-					
												01	20n						
												10	30n	U.S.					
												11	40n	(0.0					
							-	-	-				11/15/1	iia					
0	0	10	0	0	0	1	0	0	0	manufactured to the same of	Deep Sleep mode	Deep Sle	p mode Control:						
0	1		0	0	0	0	0	0	A ₁	A ₀		A[1:0]:	Description Normal Mode [P	OR1					
												01	Enter Deep Slee						
												11	Enter Deep Slee						
												After this enter Dee keep outp Remark:	command initiated p Sleep Mode, BU	I, the chip wil JSY pad will					

-		-		10000	1000000	1000	No. of Contract		I	I	-
)/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
1	11	0	0	0	0	0	0 A ₂	O At	1 Ao	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter car be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X increment, 10 –Y increment, X increment, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
1	14	0	Α6	O As	A ₄	0	1 A ₂	O At	Ao	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F). A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after
	0 1	0 11 0 12	0 12 0	0 11 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0	0 11 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0	0 11 0 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0	0 12 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0	0 14 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0	NC# Hex D7 D6 D5 D4 D3 D2 D1 O 11 O O O O O O O 1 O O O O O O A2 A1 O 12 O O O O O O O O 14 O O O O O O O O O 14 O O O O O O O O O O	NC# Hex D7 D6 D5 D4 D3 D2 D1 D0 0	NC# New D7 D6 D5 D4 D3 D2 D1 D0 Command O

	man D/C#	-	_	D6	D5	D4	D3	D2	D1	DO	Command	Description			
	10						10000	7.0			- Indiana and a second				
0	1	15	0	0	0	0	0	1 A ₂	0 A ₁	1 A ₀	VCI Detection	VCI Detection A[2:0] = 100 [POR], Detect level at 2.3' A[2:0]: VCI level Detect			
												A[2:0] VCI level			
												011 2.2V			
												100 2.3V			
												101 2.4V			
												110 2.5V			
												110 2.5V			
												Other NA			
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from th Status Bit Read (Command 0x2F). Temperature Sensor Selection			
0	1	10	A ₇	As	A ₅	A ₄	A ₃	A ₂	At	Ao	Control	A[7:0] = 48h [POR], external			
•				r no	7.0	134	70	14	, a	7.00		temperatrure sensor			
												A[7:0] = 80h Internal temperature senso			
-												have a control of			
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor Control (Write to	Write to temperature register. A[7:0] = 7Fh [POR]			
0	1		A7	As	A ₅	A ₄	Аз	A ₂	A ₁	Ao	temperature register)	7(1.0) - 11 II [1 Old			
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.			
1	1		A7	A ₆	A ₅	A ₄	Аз	A ₂	A ₁	Ao	Control (Read from temperature register)				
0		1C	-	0	0	1	1	1	0		Temperature Sensor Control (Write Command	Write Command to External temperature sensor.			
0	1		A ₇	As	A5	A ₄	A ₃	A ₂	A ₁	A ₀	to External temperature	A[7:0] = 00h [POR],			
0	1		B ₇	B ₆	B ₅	B ₄	Ba	B ₂	Bı	B ₀	sensor)	B[7:0] = 00h [POR],			
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co	Co. Cere esta	C[7:0] = 00h [POR],			
												A[7:6]			
												A[7:6] Select no of byte to be sent			
												00 Address + pointer			
												01 Address + pointer + 1st parameter			
												10 Address + pointer + 1st parameter + 2nd pointer			
												11 Address			
												A[5:0] - Pointer Setting			
												B[7:0] - 1st parameter			
												C[7:0] – 2 nd parameter			
												The command required CLKEN=1. Refer to Register 0x22 for detail.			
												After this command initiated, Write			
												Command to external temperature			
												sensor starts. BUSY pad will output high			
												during operation.			

	man	and the latest l	p de la contraction de	100000	Massair	Section 1	1207	100	F 285	10000	12	1-	SALCO
UW#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Descripti	on
0	0	20	0	0	1	0	0	0	0	0	Master Activation	The Displatorated at BUSY pactoperation.	ay Update Sequence ay Update Sequence Option is R22h. d will output high during User should not interrupt this to avoid corruption of panel
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM cont	ent option for Display Update
0	1		A ₇	A ₆	A ₅	A ₄	Аз	A ₂	Aı	Ao	1	A[7:0] = 0 B[7:0] = 0	0h [POR]
0	1		B ₇	0	0	0	0	0	0	0			d RAM option
												0000	Normal
												0100	Bypass RAM content as 0
												1000	Inverse RAM content
												0000 0100 1000 B[7] Source 0 Ava	RAM option Normal Bypass RAM content as 0 Inverse RAM content ce Output Mode allable Source from S0 to S175 allable Source from S8 to S167
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	written into command advance a For Write Content For Black	of Write RAM(BW) = 1

/W#		d Ta	pionesioneless	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Option	on:
0	1		A ₇	A ₆	A5	A4	A ₃	A ₂	A ₁	Ao	Control 2	Enable the stage for Master Ac A[7:0]= FFh (POR)	
												Operating sequence	(in Hex)
												Enable clock signal	80
												Disable clock signal	01
												Enable clock signal	CO
												→ Enable Analog	CU
												Disable Analog → Disable clock signal	03
												a receive areas agrees	
												Enable clock signal → Load LUT with DISPLAY Mode 1 → Disable clock signal Enable clock signal	91
												Load LUT with DISPLAY Mode 2 Disable clock signal	99
												Enable clock signal → Load temperature value → Load LUT with DISPLAY Mode 1 → Disable clock signal	B1
												Disable clock signal Load temperature value Load LUT with DISPLAY Mode 2 Disable clock signal	B9
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 1 → Disable Analog → Disable OSC	C7
												Enable clock signal → Enable Analog → Display with DISPLAY Mode 2 → Disable Analog → Disable OSC	CF
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 1 → Disable Analog → Disable OSC	F7
												Enable clock signal → Enable Analog → Load temperature value → DISPLAY with DISPLAY Mode 2 → Disable Analog → Disable OSC	FF
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entrie written into the RED RAM until command is written. Address p advance accordingly.	another
												For Red pixel: Content of Write RAM(RED) = For non-Red pixel [Black or Wh Content of Write RAM(RED) =	nite]:
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read MCU bus will fetch data from R According to parameter of Regi to select reading RAM0x24/ RA until another command is writte Address pointers will advance accordingly.	AM. ister 41h AM0x26,
- 1												1.000	

A CONTRACTOR OF THE PARTY OF TH	man	A COLUMN TO A STATE OF THE PARTY OF THE PART		220	10000		Taxas I		la constant	1000	1		- COLUMN 1		
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	ion		
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	for durat VCOM v The sen register The com ANALOG Refer to	ion defined value. sed VCOM nmand requisions GEN=1 Register 0	d in 29h b I voltage uired CLb 0x22 for d	
0	0	00	•					0			VOCUS B	01-1-1			
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration				ring VCOM
0	1		0	1	0	0	A ₃	A2	A ₁	Ao		sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec			
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP The command required CLKEN=1.			
													Register 0 ad will out n.		
0	0	2C	0 A7	0 A6	1 As	0 A4	1 A3	1 A2	0 At	0 Ao	Write VCOM register		OM regist 00h [POR]		ICU interface
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch	-1.5	78h	-3
												3Ch -1.5 78h -3 40h -1.6 Other NA			

- Cardina	man	-		7	1 22 22	1	10000	200	7000	THE STATE	In control of	
-	D/C#	-		D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for Display Option	Read Register for Display Option:
1	1		A ₇	A ₆	A ₅	A ₄	A3	A ₂	A ₁	A ₀	Display Option	A[7:0]: VCOM OTP Selection
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		(Command 0x37, Byte A)
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		BIZ-RI- VOOM Bi-t
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0]: VCOM Register (Command 0x2C)
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		(Command 0x20)
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	Ft	Fo		C[7:0]~G[7:0]: Display Mode
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		(Command 0x37, Byte B to Byte F) [5 bytes]
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		[5 bytes]
1	1		17	16	ls.	14	13	l ₂	l ₁	lo.		H[7:0]~K[7:0]: Waveform Version
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		(Command 0x37, Byte G to Byte J)
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂	K ₁	K ₀		[4 bytes]
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10 Byte User ID stored in OTP:
1	1		A7	As	A ₅	A ₄	A ₃	A ₂	A ₁	Ao		A[7:0]]~J[7:0]: UserID (R38, Byte A and
1	1		B ₇	Be	B ₅	B ₄	B ₃	B ₂	Bı	Bo		Byte J) [10 bytes]
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	Cı	Co		
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	Dı	Do		
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	Fo		
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		
1	1		H ₇	H ₆	Hs	H ₄	Нз	H ₂	Hı	Ho		
1	1		17	le.	15	14	13	12	l ₁	lo		
1	1		J ₇	J ₆	J ₅	J ₄	J ₃	J ₂	J ₁	Jo		
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	As	A4	0	0	At	Ao		A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAI before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.

-	man	-	-	D6	D5	D4	D3	D2	D1	DO	Command	Description
	100000000000000000000000000000000000000	- 1000		2000	Decision of the last	1000	RESERVED.	The state of	77.50			
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The command required CLKEN=1. Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	32	0	0	1	1	0	0	1	0	Write LUT register	Write LUT register from MCU interface
0	1	-	A7	A ₆	A ₅	A ₄	Aa	Az	Aı	Ao		[227 bytes], which contains the content of
0	1		B ₇	B ₆	B ₅	B4	Вз	B2	Bt	Bo		VS[nX-LUTm], TP[nX], RP[n], SR[nXY], FR and XON[nXY]
0	1		:	:	:	:	;	:	:	:		Refer to Session 6.7 WAVEFORM
0	1		æ		+5	*			*	165		SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command
U	U	34	U	U		*	U		U	U	CRC carculation	For details, please refer to SSD1680A application note.
												BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1		A15	A ₁₄	A ₁₃	A ₁₂	A11	A10	As	A ₈		A[15:0] is the CRC read out value
1	1		A ₇	As	A5	Aı	A ₃	A ₂	A ₁	A ₀		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write Register for Display	Write Register for Display Option
0	1		A7	0	0	0	0	0	0	0	Option	A[7] Spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	Bı	B ₀		0: Default [POR] 1: Spare
0	1		C7	C ₆	C ₅	C4	C3	C ₂	Cı	Co		1. Spare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8] D[7:0] Display Mode for WS[23:16]
0	1		0	F ₆	0	0	F ₃	F ₂	Fı	Fo		0: Display Mode 10 W3[23:10]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		1: Display Mode 2
0	1		Hz	H ₆	H ₅	H ₄	H ₃	H ₂	Hı	Ho		F[6]: Ping-Pong for Display Mode 2
0	1		J ₇	J ₆	J ₅	14 J4	J ₃	J ₂	J ₁	Jo		0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1

	man D/C#		D7	D6	D5	D4	D3	D2	D1	DO	Command	Description	
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID		
0	1	50	A7	As	A ₅	A	A ₃	A ₂	Aı	Ao	White register for osci ib		:0]: UserID [10 bytes]
	- 0			-	-	1000000		-	17.0				
0	1	-	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀			[7:0]~J[7:0] can be stored in
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		OTP	
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀			
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀			
0	1		F ₇	F ₆	F ₅	F4	F ₃	F ₂	F ₁	Fo			
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀			
0	1		H ₇	He	H ₅	H ₄	Нз	H ₂	H ₁	Ho			
0	1		17	le.	ls.	14	l ₃	12	l ₁	lo	1		
0	1		J ₇	Ja	J ₅	J ₄	J ₃	J ₂	J ₁	Jo			
_	-		-	00	- 00	04	-03	02	-	-00			
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP progra	
0	1		0	0	0	0	0	0	A ₁	Ao			Normal Mode [POR] Internal generated OTP
												programmin	
												programmin	y voltage
												: User is req	uired to EXACTLY follow the
												reference co	ode sequences
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control		
0	1		A ₇	A ₆	A5	A ₄	0	0	A ₁	Ao		A[7:0] = CON	[POR], set VBD as HIZ. ect VBD option
												A[7:6]	Select VBD as
												00	GS Transition,
													Defined in A[2] and A[1:0]
												01	Fix Level,
												1.0000	Defined in A[5:4]
												10	VCOM
												11[POR]	HiZ
												A FE AT FINE	and Cattles for VDD
												THE RESIDENCE OF THE PERSON NAMED IN	evel Setting for VBD VBD level
												A[5:4] 00	VSS
												01	VSH1
												10	VSL
												11	VSH2
													ransition setting for VBD
												VBD Level S	
													; 01b: VSH1;
												10b: VSL; 1	
												A[1:0] 00	VBD Transition LUT0
												01	LUT1
												10	LUT2
												11	LUT3
	-					-							2010
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LI	JT end
0	1		A7	As	A ₅	A4	Аз	A ₂	Aı	Ao		Data bytes s	hould be set for this
	- 1		. 41	-	-	2.0							programmed into Waveforn
												setting.	
												22h Norr	THE COLUMN TWO IS NOT
													rce output level keep
												prev	ious output before power of

On Cody VIII	man D/C#	protection of	ed and the same	De	DE	D.	Da	pa	Dr	Do	Command	Descripti	on				
CONTRACTOR OF THE PARTY OF THE	100000000	-	- 1715	D6	D5	D4	D3	D2	D1	DO		Descripti	2000				
0	1	41	0	0	0	0	0	0	0	1 A ₀	Read RAM Option	RAM0x24	POR] RAM corre I RAM corre	38			
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify th	ne start/en	d position	s of the		
0	1		0	0	A ₅	Aı	A ₃	A ₂	At	Ao	Start / End position		ddress in				
0	1		0	0	Bo	B ₄	B ₃	B ₂	Bı	Bo	Province a construction of the construction		unit for RA		Comment of the Commen		
U	•		U	, and	Б0	D4	D3	D2	Di	D0			SA[5:0], XS EA[5:0], XE				
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify th	ne start/en	d position	s of the		
0	1		A7	As	A ₅	Aı	As	A ₂	A ₁	Ao	Start / End position		Specify the start/end positions of the window address in the Y direction by address unit for RAM A[8:0]: YSA[8:0], YStart, POR = 000h				
0	1		0	0	0	0	0	0	0	As		address u					
0	1		B ₇	Be	B ₅	Ba	B ₃	B ₂	Bı	Bo		VIB-01- A	N 10-9145	Start DOE	2 - 000h		
0	1		0	0	0	0	0	0	0	B ₈			EA[8:0], YE				
0	0	46	0	1	0	0	0	1		0	Auto Write RED RAM for	Auto Write					
0	1		A7	A ₆	A5	A4	0	A2	A1	Ao	Regular Pattern	A[7]: The A[6:4]: St	0h [POR] 1st step vi ep Height, ter RAM in	POR= 00	00		
												A[6:4]	Height	A[6:4]	Height		
												000	8	100	128		
												001	16	101	256		
												010	32	110	296		
												011	64	111	NA		
												Step of al	ep Width, ter RAM in to Source	X-directi			
												A[2:0]	Width	A[2:0]	Width		
												000	8	100	128		
												001	16	101	176		
												010	32	110	NA		
												011	64	111	NA		
												BUSY pad will output high during operation.					

/W#	D/C#	Hex									Command	Descripti	on			
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for	A[7:0] = 00h [POR]				
0	1		A7	As	A ₅	A4	0	A ₂	A ₁	Ao	Regular Pattern	A[7]: The	0h [POR] 1st step va ap Height,			
													ter RAM in			
												A[6:4]	Height	A[6:4]	Height	
												000	8	100	128	
												001	101	256		
												010	32	110	296	
												011	64	111	NA	
												Step of all according A[2:0]	Width			
													Width	A[2:0]	128	
												000 8	101	176		
												010	32	110	NA.	
												011	64	111	NA	
												During op	eration, B		will output	
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initi	al settings	for the R	AM X	
0	1		0	0	A5	A4	Аз	A2	A ₁	Ao	counter	address in A[5:0]: 00	n the addr h [POR].	ess count	er (AC)	
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initi	al settings	for the R	AM Y	
0	1		A7	A ₆	A5	A4	Аз	A ₂	Aı	Ao	counter		n the addr		er (AC)	
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 00	0h [POR].			
			-				-			102	luon	Tt.:				
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty commodule and the commodule. However it can be used to termine the frame Memory Write or Read Commands.			he display minate	

3. Environmental

3. 1 HANDLING, SAFETYAND ENVIROMENTAL REQUIREMENTS

WARNING

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions

- (1) It's recommended that you consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module.
- (2) It's recommended that you attach a transparent protective plate to the surface in order to protect the EPD. Transparent protective plate should have sufficient strength in order to resist external force.
- (3) You should adopt radiation structure to satisfy the temperature specification.
- (4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
- (5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
- (6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
- (7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Product specification The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.
Product Environmental certification
ROHS
REMARK
All The specifications listed in this document are guaranteed for module only. Post-assembled operation or
component(s) may impact module performance or cause unexpected effect or damage and therefore listed
specifications is not warranted after any Post-assembled operation.

3.2 Reliability test

	TEST	CONDITION
1	High Townsontons Organities	T=70°C, RH=40%RH, For 240hrs
1	High-Temperature Operation	Test in white pattern
2	Lavy Tamananatuma On anation	T = -25°C for 240 hrs
	Low-Temperature Operation	Test in white pattern
3	High-Temperature Storage	T=40°C , RH=35%RH, For 240 hrs
4	Low-Temperature Storage	T = 0°C, for 240 hrs
5	High Temperature, High Humidity Operation	T=40°C, RH=80%RH, For 240hrs
6	High Tammanatuma High Hymidity Standag	T=50°C, RH=80%RH, For 240hrs
6	High Temperature, High Humidity Storage	Test in white pattern
		-25°C (30min) ~ 70°C(30min), 50 Cycle
7	Temperature Cycle	Test in white pattern
8	UV exposure Resistance	765 W/m² for 168hrs, 40°C
		Air+/-15KV; Contact+/-8KV
		(Test finished product shell, not display only)
9	ESD Gun	Air+/-8KV; Contact+/-6KV
	Lob Guil	(Naked EPD display, no including IC and FPC
		area) Air+/-4KV; Contact+/-2KV
		(Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

4. Electrical Characteristics

4. 1 ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Rating	Unit
V CI	Logic supply voltage	-0.5 to +6.0	V
V IN	Logic Input voltage	-0.5 to VCI +0.5	V
V OUT	Logic Output voltage	-0.5 to VCI +0.5	V
T OPR	Operation temperature range	0~40	°C
T STG	Storage temperature range	-25~70	°C
T STGo	Optimal Storage Temp	23 ± 2	°C
H STGo	Optimal Storage Humidity	55 ± 10	%RH

^{*} Note: Avoid direct sunlight.

Table 4.1-1: Maximum Ratings

Note: Maximum ratings are those values beyond which damages to the device may occur.

Functional operation should be restricted to the limits in the Electrical Characteristics chapter.

4. 2 DC CHARACTERISTICS

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR=25°C.

Table 4.2-1: DC Characteristics

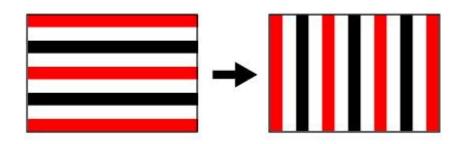
Symbol	Parameter	Test Condition	Applicable pin	Min.	Typ.	Max.	Unit
VSS	Single ground			-	0	-	V
VCI	VCI operation voltage		VCI	2.2	3.0	3.7	V
VDD	Core logic voltage		VDD	1.7	1.8	1.9	V
VIH	High level input voltage	-		0.8 VCI	-	-	V
VIL	Low level input voltage	-		-	-	0.2 VCI	V
VOH	High level output voltage	IOH = -100uA		0.9 VCI	-	-	V
VOL	Low level output voltage	IOL = 100uA			-	0.1 VCI	V
PTYP	Typical power	VCI = 3.0V			9		mW
PSTPY	Deep sleep mode	VCI = 3.0V			0.003		mW
Iopr_VCI	Typical operating current	VCI = 3.0V		-	3		mA
-	Image update time	25°C			14		sec
		DC/ DC off					
Idala VCI	Madula an anatina ayumant	No clock	-	-	20		A
Idslp_VCI	Module operating current	No input load Ram					uA
		data retain					
		DC/ DC off					
I.1. VCI	Daan alaan mada	No clock			1	5	33 A
Islp_VCI	Deep sleep mode	No input load Ram	-	-	1	5	uA
		data not retain					

Notes:

Full refresh: The screen will flicker several times during the refresh process; Fast Refresh: The screen will flash once during the refresh process;

¹⁾ Refresh time: the time it takes for the whole process from the screen change to the screen stabilization.

²⁾ The difference between different refresh methods:



During the fast refresh or partial refresh of the electronic paper, it is recommended to add a full-screen refresh after 5 consecutive operations to reduce the accumulation of afterimages on the screen.

- 1. The typical power is measured with following transition from horizontal pattern to vertical pattern.(Note4.2-1)
- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3.The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by Seengreat.

Note 4.2-1

The Typical power consumption

4.3 Serial Peripheral Interface Timing

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, TOPR = 25 °C, CL=20pF

Write mode

Symbol	Parameter	Min	Typ	Max	Unit
fSCL	SCL frequency (Write Mode)	-	-	20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	60		-	ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	65	-	-	ns
tCSHIGH	Time CS# has to remain high between two transfers	100	-	-	ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25	-	-	ns
tSCLLOW	Part of the clock period where SCL has to remain low	25	1	-	ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10	-	-	ns
tSIHLD	LD Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL			-	ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fSCL	SCL frequency (Read Mode)	-	-	2.5	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100	-	-	ns
tCSHLD	CSHLD Time CS# has to remain low after the last falling edge of SCLK			-	ns
tCSHIGH	CSHIGH Time CS# has to remain high between two transfers		-	-	ns
tSCLHIGH	Part of the clock period where SCL has to remain high	180	-	-	ns
tSCLLOW	Part of the clock period where SCL has to remain low	180	-	-	ns
T fSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL	-	50	-	ns

tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	-	0	-	ns	

Note: All timings are based on 20% to 80% of VDDIO-VSS

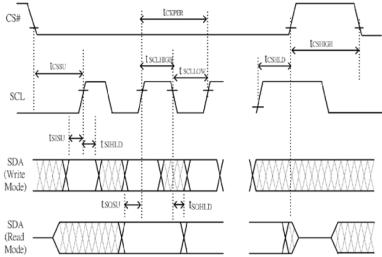


Figure 4.3-1: Serial peripheral interface characteristics

4.4 MCU Interface

4.4-1 MCU interface selection

The 2.13inch e-paper can support 3-wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in.

Table 4.4-1: MCU interface selection

BS1	MPU Interface			
L 4-lines serial peripheral interface (SPI)				
Н	3-lines serial peripheral interface (SPI) - 9 bits SPI			

Note: L is connected to VSS and H is connected to VDDIO

4.4-2 MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

Table 4.4-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin	
Write command		Command bit	L	L	
Write data	1	Data bit	Н	L	

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal

In the write mode:

SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

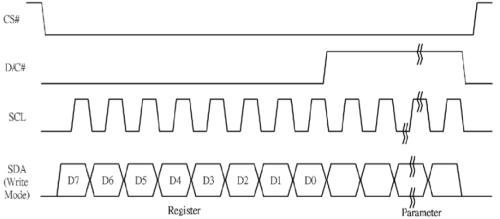


Figure 4.4-1: Write procedure in 4-wire SPI mode

In the read mode:

After driving CS# to low, MCU need to define the register to be read. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, .. D0 with D/C#keep low. After SCL change to low for the last bit of register, D/C# need to drive to high. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, .. D0. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

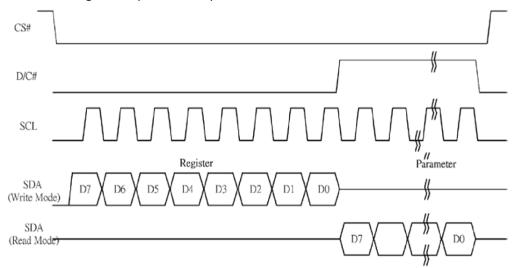


Figure 4.4-2: Read procedure in 4-wire SPI mode

4.4-3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

Table 4.4-3: Control pins status of 3-wire SPI

Function	Function SCL pin SDA pin D/C# pin		CS# pin			
Write	Write ↑		↑ Command Tie LO		Tie LOW	L
Write data ↑		rite data		L		

Note:

- (1)L is connected to VSS and H is connected to VDDIO
- (2) stands for rising edge of signal

In the write operation:

There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

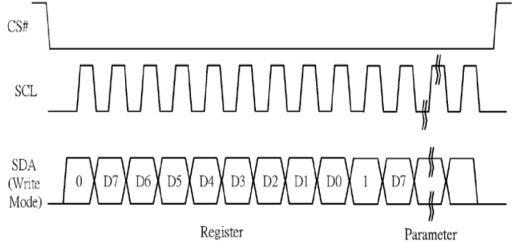


Figure 4.4-3: Write procedure in 3-wire SPI mode

In the read mode:

After driving CS# to low, MCU need to define the register to be read. D/C=0 is shifted thru SDA with one rising edge of SCL. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. D/C=1 is shifted thru SDA with one rising edge of SCL. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

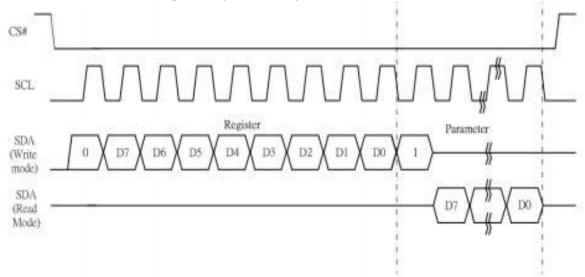
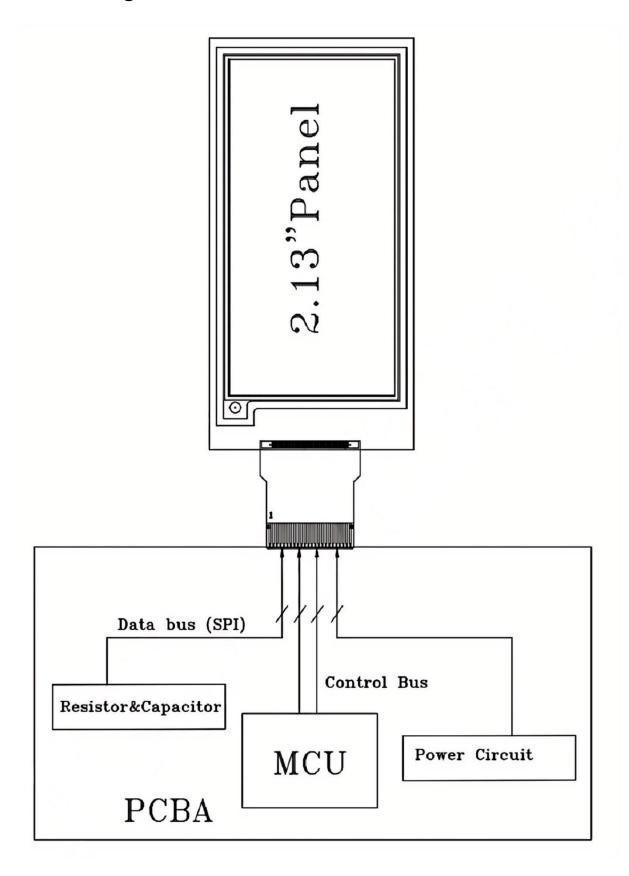
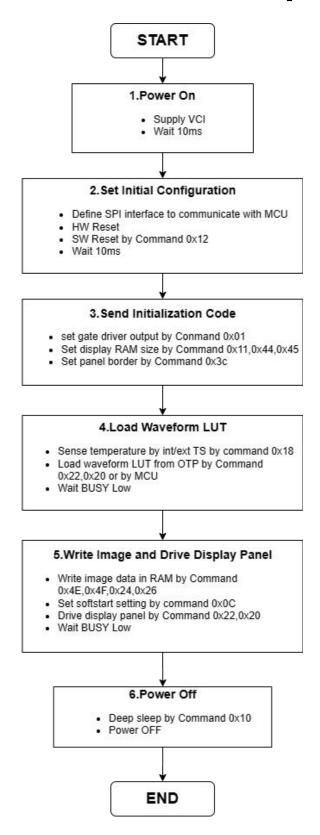



Figure 4.4-4: Read procedure in 3-wire SPI mode


4.4 Block Diagram

5. Typical Operating Sequence

5.1 General operation flow to drive display panel

5.2 Normal Program Reference Code

ACTION	VALUE/DATA	COMMENT
	POWER ON	
delay	10ms	
PIN CONFIG		
RESE#	low	Hardware reset
delay	200us	1
RESE#	high	1
delay	200us	1
Read busy pin	•	Wait for busy low
Command 0x12		Software reset
Read busy pin		Wait for busy low
Command 0x01	Data 0xF9 0x00 0x00	Set display size and driver output control
Command 0x11	Data 0x01	Ram data entry mode
Command 0x44	Data 0x01 0x10	Set Ram X address
Command 0x45	Data 0xF9 0x00 0x00 0x00	Set Ram Y address
Command 0x3C	Data 0xC0	Set border
	SET VOLTAGE AND	LOAD LUT
Command 0x2C	Data 0x70	Set VCOM value
Command 0x03	Data 0x17	Gate voltage setting
Command 0x04	Data 0x41 0x00 0x32	Source voltage setting
Command 0x32	Write 224bytes LUT	Load LUT
	LOAD IMAGE AND	UPDATE
Command 0x4E	Data 0x01	Set Ram X address counter
Command 0x4F	Data 0xF9 0x00	Set Ram Y address counter
Command 0x24	4000bytes	Load image (128/8*250)(BW)
Command 0x22	Data 0XC7	Image update
Command 0x4E	Data 0x01	Set Ram X address counter
Command 0x4F	Data 0xF9 0x00	Set Ram Y address counter
Command 0x26	4000bytes	Load image (128/8*250)(R)
Command 0x22	Data 0XC7	Image update
Command 0x20		
Read busy pin		
Command 0x10	Data 0X01	Enter deep sleep mode
	POWER OF	F

6. Optical characteristics

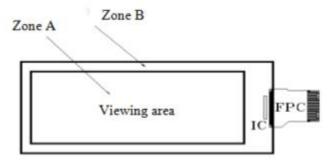
6.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

T=25°C

R	White	white	30	35	-	%	Note 6-1
	Reflectivity						
GN	2Grey Level	-	-	DS+(WS-DS)×n(m-1)	-		
CR	Contrast Ratio	Indoor	8:1		-	-	Note 6-2
Life	-	Topr		1000000times or 5years	-	-	

m:2


WS: White state DS: Dark stat

Note 6-1: Luminance meter: Eye - One Pro Spectrophotometer.

Note 6-2: CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

7. Point and line standard

Temperature: $25 \pm 3^{\circ}$ C; Humidity: $55 \pm 10\%$ RH; Brightness: $1200^{\sim}1500$ LUX; distance: 20-30CM; Angle: Relate 30° surround.

7.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
2	Black/White spots	D≤0.25mm, Allowed 0.25mm < D≤0.4mm N≤3, and Distance≥5mm 0.4mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	L≤0.6mm, W≤0.2mm, N≤1 L≤2.0mm,W>0.2mm, Not Allow L>0.6mm, Not Allow		Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	

5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			

7.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D=(L+W)/2 D≤0.25mm, Allowed 0.25mm <d≤0.4mm, d="" n≤3="">0.4mm, Not Allow</d≤0.4mm,>	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual / Microscope	Zone A Zone B
3	Dirty	Allowed if can be removed	MI		Zone A Zone B
4	Chips/Scratch/ Edge crown	X≤3mm,Y≤0.5mmAnd without affecting the electrode is permissible 2mm≤X or 2mm≤Y Not Allow W≤0.1mm,L≤5mm, No harm to the electrodes and N≤2 allow	MI	Visual / Microscope	Zone A Zone B

8. Precautions

- (1) Do not apply pressure to the EPD panel in order to prevent damaging it.
- (2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
- (3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
- (4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
- (5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL / EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
- (6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.